Classification of Affective Speech using Normalized Time-Frequency Cepstra

نویسندگان

  • D. Neiberg
  • P. Laukka
  • G. Ananthakrishnan
چکیده

Subtle temporal and spectral differences between categorical realizations of para-linguistic phenomena (e.g., affective vocal expressions) are hard to capture and describe. In this paper we present a signal representation based on Time Varying Constant-Q Cepstral Coefficients (TVCQCC) derived for this purpose. A method which utilizes the special properties of the constant Q-transform for mean F0 estimation and normalization is described. The coefficients are invariant to segment length, and as a special case, a representation for prosody is considered. Speaker independent classification results using ν-SVM with the Berlin EMO-DB and two closed sets of basic (anger, disgust, fear, happiness, sadness, neutral) and social/interpersonal (affection, pride, shame) emotions recorded by forty professional actors from two English dialect areas are reported. The accuracy for the Berlin EMO-DB is 71.2 %, and the accuracies for the first set including basic emotions was 44.6% and for the second set including basic and social emotions the accuracy was 31.7% . It was found that F0 normalization boosts the performance and a combined feature set shows the best performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech recognition of mandarin syllables using both linear predict coding cepstra and Mel frequency cepstra

This paper is to compare two most common features representing a speech word for speech recognition on the basis of accuracy, computation time, complexity and cost. The two features to represent a speech word are the linear predict coding cepstra (LPCC) and the Mel-frequency cepstrum coefficient (MFCC). The MFCC was shown to be more accurate than the LPCC in speech recognition using the dynamic...

متن کامل

Normalization of Time-deri Using Histogram Eq

In this paper we describe a new framework of feature compensation for robust speech recognition. We introduce Delta-Cepstrum Normalization (DCN) that normalizes not only cepstral coefficients, but also their time-derivatives. In previous work, the mean and the variance of cepstral coefficients are normalized to reduce the irrelevant information, but such a normalization was not applied to time-...

متن کامل

Normalization of time-derivative parameters using histogram equalization

In this paper we describe a new framework of feature compensation for robust speech recognition. We introduce Delta-Cepstrum Normalization (DCN) that normalizes not only cepstral coefficients, but also their time-derivatives. In previous work, the mean and the variance of cepstral coefficients are normalized to reduce the irrelevant information, but such a normalization was not applied to time-...

متن کامل

A New Feature Normalization Scheme Based on Eigenspace for Noisy Speech Recognition

We propose a new feature normalization scheme based on eigenspace, for achieving robust speech recognition. In particular, we employ the Mean and Variance Normalization (MVN) in eigenspace using unique and in– dependent eigenspaces to cepstra, delta and delta-delta cepstra respectively. We also normalize training data in eigenspace and get the model from the normalized training data. In additio...

متن کامل

Recognition of noisy speech using normalized moments

Spectral subband centroid, which is esse ntially the first -order normalized moment, has been proposed for speech recognition and its robustness to additive noise has been demonstrated before. In this paper, we extend this concept to the use of normalized spectral subband moments (NSSM) for robust speech recognition. We show that normalized moments, if properly selected, yield comparable recogn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011